cluster-computingtidyrr-sfunnest

How to unnest an object from `spatialsampling`'s `spatial_clustering_cv`


I would like to perform spatial clustering on a sf object and attach the fold IDs to my original dataframe, in a new column.

Here's what my input looks like (an sf object with points)

# A tibble: 6 × 2
  Street             geometry
  <fct>           <POINT [°]>
1 Pave   (-93.61975 42.05403)
2 Pave   (-93.61976 42.05301)
3 Pave   (-93.61939 42.05266)

Here's the desired output:

# A tibble: 6 × 3
  Street             geometry id    
  <fct>           <POINT [°]> <chr> 
1 Pave   (-93.61975 42.05403) Fold01
2 Pave   (-93.61976 42.05301) Fold01
3 Pave   (-93.61939 42.05266) Fold01

Running into errors when I try to unnest the data to add fold id to the dataset... here's a reprex:

library(sf)
library(spatialsample)
library(modeldata)
library(tidyr)

data("ames", package = "modeldata")

ames_sf <- sf::st_as_sf(
  ames,
  # "coords" is in x/y order -- so longitude goes first!
  coords = c("Longitude", "Latitude"),
  # Set our coordinate reference system to EPSG:4326,
  # the standard WGS84 geodetic coordinate reference system
  crs = 4326
)

set.seed(123)
cluster_folds <- spatial_clustering_cv(ames_sf, v = 15)
mydf <- unnest(cluster_folds)

Error in `list_sizes()`:
! `x[[1]]` must be a vector, not a <spatial_clustering_split/spatial_rsplit/rsplit> object.
Run `rlang::last_trace()` to see where the error occurred.
Warning message:
`cols` is now required when using `unnest()`.
ℹ Please use `cols = c(splits)`. 

Solution

  • Using rsample::assessment() and rsample::add_resample_id() on a list of rsplit objects should do the trick:

    library(sf)
    library(rsample)
    library(spatialsample)
    library(modeldata)
    library(tidyr)
    library(dplyr)
    library(purrr)
    library(ggplot2)
    
    data("ames", package = "modeldata")
    
    ames_sf <- sf::st_as_sf(
      ames[, c("Street", "Longitude", "Latitude")],
      coords = c("Longitude", "Latitude"),
      crs = 4326
    )
    
    set.seed(123)
    # create patial Clustering Cross-Validation folds with kmeans clustering,
    # extract assesments from each fold, augment with id
    folds_kmeans <- spatial_clustering_cv(ames_sf, v = 15, cluster_function = "kmeans")
    clust_fkm <- folds_kmeans$splits %>% 
      map(~ assessment(.x) %>% add_resample_id(.x)) %>% 
      bind_rows() 
    

    Resulting sf object with 2930 features:

    print(clust_fkm, n = 5)
    #> Simple feature collection with 2930 features and 2 fields
    #> Geometry type: POINT
    #> Dimension:     XY
    #> Bounding box:  xmin: -93.69315 ymin: 41.9865 xmax: -93.57743 ymax: 42.06339
    #> Geodetic CRS:  WGS 84
    #> First 5 features:
    #>   Street     id                   geometry
    #> 1   Pave Fold01 POINT (-93.63666 42.05445)
    #> 2   Pave Fold01 POINT (-93.63637 42.05027)
    #> 3   Pave Fold01  POINT (-93.63937 42.0493)
    #> 4   Pave Fold01  POINT (-93.64134 42.0571)
    #> 5   Pave Fold01 POINT (-93.64237 42.05306)
    

    Same with hclust, for later comparison:

    clust_fhcl <- spatial_clustering_cv(ames_sf, v = 15, cluster_function = "hclust") %>% 
     pluck("splits") %>% 
     map(~ assessment(.x) %>% add_resample_id(.x)) %>% 
     bind_rows() 
    

    If it's just for clustering, we can skip spatialsample / rsample and use stats::kmeans() or stats::hclust() with distance matrix ( that's exactly what happens when calling spatialsample::spatial_clustering_cv() ). Here we'll add cluster labels to ames_sf as new columns.

    set.seed(123)
    # generate distance matrix from sf object to use for clustering
    ameas_dist <- ames_sf %>% 
      st_distance() %>% 
      as.dist() 
    
    # stats::kmeans() clustring
    cl_kmeans <- kmeans(ameas_dist, 15)
    ames_sf$kmeans_clust <- sprintf("Fold%.2d", cl_kmeans$cluster)
    
    # stats::hclust() clustering
    cl_hclust <- hclust(ameas_dist) %>% cutree(k = 15)
    ames_sf$hclust <- sprintf("Fold%.2d", cl_hclust)
    
    # ames_sf includes cluster labels from both methods:
    print(ames_sf, n = 5)
    #> Simple feature collection with 2930 features and 3 fields
    #> Geometry type: POINT
    #> Dimension:     XY
    #> Bounding box:  xmin: -93.69315 ymin: 41.9865 xmax: -93.57743 ymax: 42.06339
    #> Geodetic CRS:  WGS 84
    #> # A tibble: 2,930 × 4
    #>   Street             geometry kmeans_clust hclust
    #> * <fct>           <POINT [°]> <chr>        <chr> 
    #> 1 Pave   (-93.61975 42.05403) Fold10       Fold01
    #> 2 Pave   (-93.61976 42.05301) Fold10       Fold01
    #> 3 Pave   (-93.61939 42.05266) Fold10       Fold01
    #> 4 Pave   (-93.61732 42.05125) Fold10       Fold01
    #> 5 Pave    (-93.63893 42.0609) Fold15       Fold02
    #> # ℹ 2,925 more rows
    

    Visual comparison of different methods:

    list(
      ggplot(clust_fkm) +
        labs(caption = 'spatial_clustering_cv(ames_sf, v = 15, \ncluster_function = "kmeans")') +
        geom_sf(aes(color = id)),
      ggplot(clust_fhcl) +
        labs(caption = 'spatial_clustering_cv(ames_sf, v = 15, \ncluster_function = "hclust")') +
        geom_sf(aes(color = id)),
      ggplot(ames_sf) +
        labs(caption = 'kmeans(ameas_dist, 15)') +
        geom_sf(aes(color = kmeans_clust)),
      ggplot(ames_sf) +
        labs(caption = 'hclust(ameas_dist) %>% \ncutree(k = 15)') +
        geom_sf(aes(color = hclust))
    ) %>% 
      map(~ .x + theme(legend.position = "none", 
                       axis.text = element_blank(),
                       axis.ticks = element_blank())) %>% 
      patchwork::wrap_plots()
    

    Created on 2023-07-12 with reprex v2.0.2