pythonpandasxlsxdata-wrangling

Can't Open .xlsx Document


I tried to download a .xlsx file from my course. But when I opened the .xlsx file, it turned into something like this.

UEsDBBQABgAIAAAAIQBBN4LPbgEAAAQFAAATAAgCW0NvbnRlbnRfVHlwZXNdLnhtbCCiBAIooAAC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs
VMluwjAQvVfqP0S+Vomhh6qqCBy6HFsk6AeYeJJYJLblGSj8fSdmUVWxCMElUWzPWybzPBit2iZZ
QkDjbC76WU8kYAunja1y8T39SJ9FgqSsVo2zkIs1oBgN7+8G07UHTLjaYi5qIv8iJRY1tAoz58Hy
TulCq4g/QyW9KuaqAvnY6z3JwlkCSyl1GGI4eINSLRpK3le8vFEyM1Ykr5tzHVUulPeNKRSxULm0
+h9J6srSFKBdsWgZOkMfQGmsAahtMh8MM4YJELExFPIgZ4AGLyPdusq4MgrD2nh8YOtHGLqd4662
dV/8O4LRkIxVoE/Vsne5auSPC/OZc/PsNMilrYktylpl7E73Cf54GGV89W8spPMXgc/oIJ4xkPF5
vYQIc4YQad0A3rrtEfQcc60C6Anx9FY3F/AX+5QOjtQ4OI+c2gCXd2EXka469QwEgQzsQ3Jo2PaM
HPmr2w7dnaJBH+CW8Q4b/gIAAP//AwBQSwMEFAAGAAgAAAAhALVVMCP0AAAATAIAAAsACAJfcmVs
cy8ucmVscyCiBAIooAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAACskk1PwzAMhu9I/IfI99XdkBBCS3dBSLshVH6ASdwPtY2jJBvdvyccEFQa
gwNHf71+/Mrb3TyN6sgh9uI0rIsSFDsjtnethpf6cXUHKiZylkZxrOHEEXbV9dX2mUdKeSh2vY8q
q7iooUvJ3yNG0/FEsRDPLlcaCROlHIYWPZmBWsZNWd5i+K4B1UJT7a2GsLc3oOqTz5t/15am6Q0/
iDlM7NKZFchzYmfZrnzIbCH1+RpVU2g5abBinnI6InlfZGzA80SbvxP9fC1OnMhSIjQS+DLPR8cl
oPV/WrQ08cudecQ3CcOryPDJgosfqN4BAAD//wMAUEsDBBQABgAIAAAAIQCBPpSX8wAAALoCAAAa
AAgBeGwvX3JlbHMvd29ya2Jvb2sueG1sLnJlbHMgogQBKKAAAQAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAACsUk1LxDAQvQv+hzB3m3YVEdl0LyLsVesPCMm0KdsmITN+9N8bKrpdWNZLLwNvhnnv
zcd29zUO4gMT9cErqIoSBHoTbO87BW/N880DCGLtrR6CRwUTEuzq66vtCw6acxO5PpLILJ4UOOb4
KCUZh6OmIkT0udKGNGrOMHUyanPQHcpNWd7LtOSA+oRT7K2CtLe3IJopZuX/uUPb9gafgnkf0fMZ
CUk8DXkA0ejUISv4wUX2CPK8/GZNec5rwaP6DOUcq0seqjU9fIZ0IIfIRx9/KZJz5aKZu1Xv4XRC
+8opv9vyLMv072bkycfV3wAAAP//AwBQSwMEFAAGAAgAAAAhAJyIPqiPAQAAzQIAAA8AAAB4bC93
b3JrYm9vay54bWyMkkuL2zAQx++Ffgeh+0aW8IYQ4iyUtmwuZWFfZ0UaxyJ6Icnr5Nt3bOOmsJc9
SfPQb+avmd3DxVnyASmb4BvKVxUl4FXQxp8a+vry+25DSS7Sa2mDh4ZeIdOH/fdvuyGk8zGEM0GA
zw3tSolbxrLqwMm8ChE8RtqQnCxophPLMYHUuQMozjJRVWvmpPF0JmzTVxihbY2Cn0H1DnyZIQms
LNh+7kzMC82pr+CcTOc+3qngIiKOxppynaCUOLU9nHxI8mhR9oXfL2S8fkI7o1LIoS0rRLG5yU96
ecU4nyXvd62x8DZ/O5Ex/pFurGIpsTKXX9oU0A1doxkGuDlqSlIff/TGYpTXtago2/8bxVMiiC2Q
npL5kOqKKZRoaGVvywuOZSmIflELsR7fjiN8MzDkG2Y0yeXdeB2GhooaV+K6WLzCfxim0LvRpRu7
2Nx8j2BOXWnopuJTZ+w//DR4LDOdxE+Cn8dlwCYn32HUhAK3Bi/poPnYH1ueKWkVChyPKVEIweeM
ZRP3fwEAAP//AwBQSwMEFAAGAAgAAAAhAG64GVc3AQAAFwMAABQAAAB4bC9zaGFyZWRTdHJpbmdz
LnhtbGySy07DMBBF90j8Q+Q9dahEBShJlbaUhwSqVPoBQzM0Jn4UzwSRv8c8FsjOco491zPXt5h/
Gp19oCflbCnOJ7nI0O5do+yhFLvn9dmlyIjBNqCdxVIMSGJenZ4URJyFXkulaJmP11LSvkUDNHFH
tOHk1XkDHEp/kHT0CA21iGy0nOb5TBpQVmR711suxcVMZL1V7z0uf8H0SlQFqargqj70VEiuCvld
/7GOnY/hQrsuW8b01ukmZivF6JWBRKFv1KjqKqbLNljiE4EN2gHsMC5SJ2OgTW4GBfAp1cDK9iZW
uOlcjNaKvUoGq7tAExt/HFvEClulQyBGPHMausTenjgZ9w7HzLm3IUdx/wMMkJr+BOnn7Chda4Md
+jdIZWsCHT/1iOYl3WvLwP8DJkOwqy8AAAD//wMAUEsDBBQABgAIAAAAIQA7bTJLwQAAAEIBAAAj
AAAAeGwvd29ya3NoZWV0cy9fcmVscy9zaGVldDEueG1sLnJlbHOEj8GKwjAURfcD/kN4e5PWhQxD
UzciuFXnA2L62gbbl5D3FP17sxxlwOXlcM/lNpv7PKkbZg6RLNS6AoXkYxdosPB72i2/QbE46twU
CS08kGHTLr6aA05OSonHkFgVC7GFUST9GMN+xNmxjgmpkD7m2UmJeTDJ+Ysb0Kyqam3yXwe0L061
7yzkfVeDOj1SWf7sjn0fPG6jv85I8s+ESTmQYD6iSDnIRe3ygGJB63f2nmt9DgSmbczL8/YJAAD/
/wMAUEsDBBQABgAIAAAAIQCDr+rjjQYAAOMbAAATAAAAeGwvdGhlbWUvdGhlbWUxLnhtbOxZzW4b
NxC+F+g7EHtPLNmSYxmRA0uW4jZxYthKihypFbXLmLtckJQd3YrkWKBA0bTopUBvPRRtAyRAL+nT
uE3RpkBeoUNyJZEWFduJgf7FBmyJ+3E4nJ+PM9yr1x5kDB0SISnPm1H1ciVCJI/5gOZJM7rT615a
i5BUOB9gxnPSjMZERtc23n/vKl5XKckIgvm5XMfNKFWqWF9akjEMY3mZFySHZ0MuMqzgq0iWBgIf
gdyMLS1XKqtLGaZ5hHKcgdjbwyGNCeppkdHGRHiHwddcST0QM7GvRRNvhsEODqoaIceyzQQ6xKwZ
wToDftQjD1SEGJYKHjSjivmJljauLuH1chJTC+Y687rmp5xXThgcLJs1RdKfLlrt1hpXtqbyDYCp
eVyn02l3qlN5BoDjGHZqdXFl1rpr1dZEpgOyH+dltyv1Ss3HO/JX5nRutFqteqPUxQo1IPuxNodf
q6zWNpc9vAFZfH0OX2tttturHt6ALH51Dt+90lit+XgDShnND+bQ2qHdbil9Chlyth2ErwF8rVLC
ZyiIhml06SWGPFeLYi3D97noAkADGVY0R2pckCGOIYrbOOsLiiNU4JxLGKgsV7qVFfirf2vmU00v
j9cJdubZoVjODWlNkIwFLVQz+hCkRg7k1fPvXz1/il49f3L88Nnxw5+OHz06fvijleVN3MZ54k58
+e1nf379Mfrj6TcvH38RxksX/+sPn/zy8+dhIOTXbP8vvnzy27MnL7769PfvHgfgmwL3XXiPZkSi
W+QI7fEM9mYM42tO+uJ8M3oppt4MnILsgOiOSj3grTFmIVyL+Ma7K4BaQsDro/uervupGCkaWPlG
mnnAHc5Zi4ugAW7otRwL90Z5El5cjFzcHsaHobXbOPdc2xkVwKkQsvO2b6fEU3OX4VzhhOREIf2M
HxASmHaPUs+uOzQWXPKhQvcoamEaNEmP9r1Amk3aphn4ZRxSEFzt2WbnLmpxFtr1Fjn0kZAQmAWU
7xHmmfE6HimchUT2cMZcg9/EKg0puT8WsYvrSAWeTgjjqDMgUobm3BawX8fpNzCwWdDtO2yc+Uih
6EFI5k3MuYvc4gftFGdFUGeapy72A3kAIYrRLlch+A73M0R/Bz/gfKG771Liuft0IrhDE0+lWYDo
JyMR8OV1wv18HLMhJoZlgPA9Hs9o/jpSZxRY/QSp19+Ruj2VTpL6JhyAodTaPkHli3D/QgLfwqN8
l0DOzJPoO/5+x9/Rf56/F+XyxbP2jKiBw2d1uqnas4VF+5Aytq/GjNyUpm6XcDwNujBoGgrTVU6b
uCKFj2WL4OESgc0cJLj6iKp0P8UFlPhV04ImshSdSFRwCZW/GTbNMDkh27S3FAp706nWdQ9jmUNi
tcMHdnjF7VWnYkznmph+eLLQihZw1sVWrrzdYlWr1UKz+VurGtUMKXpbm24ZfDi/NRicWhPqHgTV
Elh5Fa4MtO7QDWFGBtruto+fuEUvfaEukikekNJHet/zPqoaJ01iZRJGAR/pvvMUHzmrNbTYt1jt
LE5yl6stWG7ivbfx0qTZnnlJ5+2JdGS5m5wsR0fNqFFfrkcoxkUzGkKbDR+zArwudamJWQJ3VbES
NuxPTWYTrjNvNsJhWYWbE2v3uQ17PFAIqbawTG1omEdlCLDcXAoY/ZfrYNaL2oCN9DfQYmUNguFv
0wLs6LuWDIckVq6znRFzK2IAJZXykSJiPx0coT4biT0M7tehCvsZUAn3IYYR9Be42tPWNo98ci6T
zr1QMzg7jlmR4pJudYpOMtnCTR5PdTDfrLZGPdhbUHezufNvxaT8BW3FDeP/2Vb0eQIXFCsD7YEY
bpYFRjpfmxEXKuXAQkVK466AazXDHRAtcD0MjyGo4H7b/BfkUP+3OWdlmLSGPlPt0QQJCueRSgUh
u0BLJvpOEVYtzy4rkpWCTEQ56srCqt0nh4T1NAeu6rM9QimEumGTkgYM7mT8+d/LDOonusj5p1Y+
NpnPWx7o6sCWWHb+GWuRmkP6zlHQCJ59pqaa0sFrDvZzHrWWseZ2vFw/81FbwDUT3C4riImYipjZ
lyX6QO3xPeBWBO8+bHmFIKov2cIDaYK09NiHwskO2mDSomzBUla3F15GwQ15WelO14UsfZNK95zG
nhZn/nJeLr6++jyfsUsLe7Z2K92AqSFpT6aoLo8mjYxxjHnL5r4I4/374OgteOUwYkralwkP4FIR
ugz70gKS3zrXTN34CwAA//8DAFBLAwQUAAYACAAAACEA2jhQXOUCAADNBgAADQAAAHhsL3N0eWxl
cy54bWykVdtu2zAMfR+wfxD07vrSOIsD20XT1ECBbhjQDNirYsuOUF0MSWmTDvv3UraTuGh3bR4S
kSIPyUOKSS92gqMHqg1TMsPhWYARlaWqmGwy/G1VeDOMjCWyIlxJmuE9Nfgi//ghNXbP6d2GUosA
QpoMb6xt575vyg0VxJyplkq4qZUWxIKoG9+0mpLKOCfB/SgIpr4gTOIeYS7KvwERRN9vW69UoiWW
rRlndt9hYSTK+U0jlSZrDqnuwgkpD9id8ApesFIro2p7BnC+qmtW0tdZJn7iA1Ke1kpag0q1lTbD
EUC7CPN7qR5l4a6AwMEqT80TeiAcNCH287RUXGlkgRlIrNNIImhvcUU4W2vmzGoiGN/36sgpOjIH
O8GgNKf0XR59Nm/H0c06w0URdB/n8f5gXUwDQRnnIwp6RZ5CKyzVsoBbNJxX+xZqlTA1fc5w9Ufr
RpN9GMUjB78LmKdrpSuY0gP5judelaec1hZq1KzZuF+rWvheK2uhpXlaMdIoSbjj7eAxHKCcknJ+
5yb5e/0Ce1cjuRWFsDdVhuFNOMYPRyhkOPZ4veDwx2g99gg2gpT/HRbt6iP+r7xDyO/tpI7eiLQt
37shdeM3SOBzki45a6SgvUGewkz2ItoozZ7A0Q1zxzF2+8Ky0ilKcKAao0dN2hXddeiOiV090AEE
jFh+wfGRLeTGM8Nf3Kbg8KqGitF6y7hl8g1+AbPanToWuIGx7tV3vTxGgcZVtCZbblfHywyfzp9p
xbYCHvJg9ZU9KNtBZPh07q0SFwMqvDXw9OAXbTXL8I/rxadkeV1E3ixYzLzJOY29JF4svXhytVgu
iySIgqufoyX0jhXUrUqYoXAyNxwWlR6KHZK/O+kyPBJu3bvoVo4PaY9zT6JpcBmHgVecB6E3mZKZ
N5uex14Rh9FyOllcx0U8yj3+v9zDwA/Dfs+75OO5ZYJyJg+9OnRorIUmgfibIlwpXSf80/9Q/gwA
AP//AwBQSwMEFAAGAAgAAAAhAApFOgd4AwAA7Q0AABgAAAB4bC93b3Jrc2hlZXRzL3NoZWV0MS54
bWyUl1FvmzAQx98n7TsgvzcEmiZNFFI1pNGqadK0bnt3wCRWATPbSdp9+p6dQssZpOQNuJ/P/t/Z
x3l+91Lk3oFJxUUZkWAwJB4rE5HychuRP7/XV7fEU5qWKc1FySLyyhS5W3z9Mj8K+ax2jGkPPJQq
Ijutq5nvq2THCqoGomIlWDIhC6rhVW59VUlGUzuoyP1wOBz7BeUlOXmYyXN8iCzjCVuJZF+wUp+c
SJZTDetXO16p2luRnOOuoPJ5X10loqjAxYbnXL9ap8QrktnjthSSbnLQ/RKMaFL7ti+O+4InUiiR
6QG4808LdTVP/akPnhbzlIMCE3ZPsiwi98FsHQTEX8xtgP5ydlSfnj1NN08sZ4lmKeSJeCb+GyGe
DfgIn4bgUlnAuKSJ5gcWszyPyHeTwn92EniECfxmhs/P9Wxrm7Gf0ktZRve5/iWO3xjf7jRMewMR
MIGYpa8rphLIAEw8CG+aZa+opou5FEcPsgmrVBU1eyOYjftGLuaJYe8BBmcKVBwW4fXcP8Daknfj
smUctY1xy3jTNq5axnHb+NAyTtrGdct42xh9ENcoDC9RaGAblEbnEMmsCRsDtJ7YHR4grS4RIsEu
gSK9domPcLekX18i3cBt6ShPy5qw0j+ibfdG7A7H0l0C59olsHSX6JE+ukS6gdvSUWKXNWGlT9Hm
doej4KxcAvl4cAks3SV6pEMBOP9IG7gtPcA7vkY6tXeMx3l3EZz3DifoVKxdpEc9FLHz1RsYqcdl
rUaserSquGM8Ou8ugTPvEjjzLtGjfXKJdgMj7ahqL2vEakfVIO4Yjwt7B4JT34HgIt+B9JR68xM9
+2dmYKQfpWZZI5363fH41LsErvUugXPvEj25n16i3cBt7SE+9TXS+Z9zx2PtHTOg/5xLYO0u0aM9
gI74gi7G0Eg9qllL69EwVj7atHFj/WiHAqepcWfBJ7/LjdPhuG76gnBZK2doFAS0O5fQ6p4YE4Rr
tEHixvopCLix65gEt3cugrdB10S4AJza5VNnW9Et+0HllpfKy1lm21+oIfLUHw8H8KxFZZriCfxV
NkJrUdRvO7j8MGh1hwPoNDIhdP0CLbnx+8T0vvKE5NBW2/tMRCohtaRcE28H3/8LMOSrikdkFE5H
0/EknIIruL1pnrwbIKVyxuE+IB9Te5vwm4va4g0AAP//AwBQSwMEFAAGAAgAAAAhAHSRme8/AQAA
UQIAABEACAFkb2NQcm9wcy9jb3JlLnhtbCCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAHySUUvDMBSF3wX/Q8l7m6TD4ULbgcqeHAhWFN9CctcVmzQk0W7/3rTdagdDyEvuOfe7J5dk
64Nqoh+wrm51jmhCUARatLLWVY7eyk18jyLnuZa8aTXk6AgOrYvbm0wYJloLL7Y1YH0NLgok7Zgw
Odp7bxjGTuxBcZcEhw7irrWK+3C1FTZcfPEKcErIEivwXHLPcQ+MzUREJ6QUE9J822YASIGhAQXa
O0wTiv+8HqxyVxsGZeZUtT+a8KZT3DlbilGc3AdXT8au65JuMcQI+Sn+2D6/Dk+Na93vSgAqMimY
sMB9a4sMzy9hcQ13fht2vKtBPhyDfqUmxRB3hICMQgA2xj0r74vHp3KDin6HMVnFdFkSwobz2Y+8
6O8DjQV1GvwvMSUxpTFZlpSyu5SlqxnxDBhzX36C4hcAAP//AwBQSwMEFAAGAAgAAAAhADY3UnxC
AAAA3AAAACcAAAB4bC9wcmludGVyU2V0dGluZ3MvcHJpbnRlclNldHRpbmdzMS5iaW5iYKAMMLJw
8NwBGsF8v5GZkYGR4RVXPkcKkGZn+PufCUgzgLEPQypDCRCmMhRRaB+ydpDpTFAbQGx0AAAAAP//
AwBQSwMEFAAGAAgAAAAhAN5BFtmKAQAAEQMAABAACAFkb2NQcm9wcy9hcHAueG1sIKIEASigAAEA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnJJBb9swDIXvA/YfDN0bOd06DIGsYkg39LBiAZJ2
Z02mY6GyJIiskezXj7bR1Gl72o3ke3j6REldHzpf9JDRxVCJ5aIUBQQbaxf2lbjf/bj4KgokE2rj
Y4BKHAHFtf74QW1yTJDJARYcEbASLVFaSYm2hc7gguXAShNzZ4jbvJexaZyFm2ifOggkL8vyi4QD
QaihvkinQDElrnr639A62oEPH3bHxMBafUvJO2uIb6nvnM0RY0PF94MFr+RcVEy3BfuUHR11qeS8
VVtrPKw5WDfGIyj5MlC3YIalbYzLqFVPqx4sxVyg+8truxTFH4Mw4FSiN9mZQIw12KZmrH1Cyvp3
zI/YAhAqyYZpOJZz77x2n/VyNHBxbhwCJhAWzhF3jjzgr2ZjMr1DvJwTjwwT74SzHfimM+d845X5
pFfZ69glE44snKqfLjzifdrFG0PwvM7zodq2JkPNL3Ba92mgbnmT2Q8h69aEPdTPnrfC8PgP0w/X
y6tF+ankd53NlHz5y/ofAAAA//8DAFBLAQItABQABgAIAAAAIQBBN4LPbgEAAAQFAAATAAAAAAAA
AAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhALVVMCP0AAAATAIA
AAsAAAAAAAAAAAAAAAAApwMAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAIE+lJfzAAAAugIA
ABoAAAAAAAAAAAAAAAAAzAYAAHhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzUEsBAi0AFAAGAAgA
AAAhAJyIPqiPAQAAzQIAAA8AAAAAAAAAAAAAAAAA/wgAAHhsL3dvcmtib29rLnhtbFBLAQItABQA
BgAIAAAAIQBuuBlXNwEAABcDAAAUAAAAAAAAAAAAAAAAALsKAAB4bC9zaGFyZWRTdHJpbmdzLnht
bFBLAQItABQABgAIAAAAIQA7bTJLwQAAAEIBAAAjAAAAAAAAAAAAAAAAACQMAAB4bC93b3Jrc2hl
ZXRzL19yZWxzL3NoZWV0MS54bWwucmVsc1BLAQItABQABgAIAAAAIQCDr+rjjQYAAOMbAAATAAAA
AAAAAAAAAAAAACYNAAB4bC90aGVtZS90aGVtZTEueG1sUEsBAi0AFAAGAAgAAAAhANo4UFzlAgAA
zQYAAA0AAAAAAAAAAAAAAAAA5BMAAHhsL3N0eWxlcy54bWxQSwECLQAUAAYACAAAACEACkU6B3gD
AADtDQAAGAAAAAAAAAAAAAAAAAD0FgAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1sUEsBAi0AFAAG
AAgAAAAhAHSRme8/AQAAUQIAABEAAAAAAAAAAAAAAAAAohoAAGRvY1Byb3BzL2NvcmUueG1sUEsB
Ai0AFAAGAAgAAAAhADY3UnxCAAAA3AAAACcAAAAAAAAAAAAAAAAAGB0AAHhsL3ByaW50ZXJTZXR0
aW5ncy9wcmludGVyU2V0dGluZ3MxLmJpblBLAQItABQABgAIAAAAIQDeQRbZigEAABEDAAAQAAAA
AAAAAAAAAAAAAJ8dAABkb2NQcm9wcy9hcHAueG1sUEsFBgAAAAAMAAwAJgMAAF8gAAAAAA==

screenshot from the site

I tried to copy the code above to Notepad and save that to the .xlsx file and load it with pandas, but it turned out that I couldn't open the file.

It also come with data1.xlsx_Zone.Identifier file with this code.

[ZoneTransfer]
ZoneId=3
HostUrl=https://doc-90-8s-drive-data-export.googleusercontent.com/download/5h7o8ts0bagde0aou10r10gc3dcbf006/in04l68286edvv25bsuu4f0s58p7b46b/1610608500000/5c82bf34-94d6-4b3c-be3d-7fada6efb770/111512825929060823233/ADt3v-NIalFe9mj1YSnuMUEqGLTP6SHgnGHFu-SsKMFPz9Q-gLw5dnvDQ0WhX5yYYUCag4drKsg6scee-5JFQQcBBOCh8IfFbmfNSf_jTpbWjDEP8xoUDTGpTAC8cZJIOf3FsbXXZkyIkakNe6MQIkW8RYVCzwZltJrQ0xeZ31CAOgRSsrfOXDfEIDiR7D-ki-EQ4SqJEi5BDJc8Fa3mndhiJxYO2cEV-ff-EcrgGQzDDgXPDihlEN4yFzS0zJXwp2lB3KsCmq4qe8lninSgzYi1dMinia1m-VHXLAGdLMlTqDKaz92_0kNBB-XJd8qbWMF5UPp4VFv-07sS-sGgnyyehb0XphhuoQ==?authuser=1&nonce=edv13apvvi0do&user=111512825929060823233&hash=d44ad48ivep96tk3cjfvj2lgdih8kbjc

Do you have any suggestions about it? I appreciate any help you can provide. Thank you


Solution

  • Looks like the file is base64 encoded. You can decode it like so

    Save the content to a file, let's say b64.

    Then run the following command to convert it: cat b46 | base64 -d > newfile.xlsx

    Or using python:

    import base64
    
    # open the base64 encoded file
    with open('b64', 'r') as encoded_file:
        encoded_content = encoded_file.read()
    
    # you can also just paste the base64 contents
    
    # Decode it
    decoded_content = base64.b64decode(encoded_content)
    
    # Save the decoded content 
    with open('newfile.xlsx', 'wb') as excel_file:
        excel_file.write(decoded_content)
    
    

    enter image description here