I am trying to run the code example for run some inference on the model Qwen/Qwen3-VL-4B-Instruct model:
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
# default: Load the model on the available device(s)
model = Qwen3VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct", dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen3VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen3-VL-4B-Instruct",
# dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-4B-Instruct")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
But I get the error message:
RuntimeError: Expected all tensors to be on the same device,
but got index is on cpu, different from other tensors on cuda:0
(when checking argument in method wrapper_CUDA__index_select)
How can I fix the issue?
You have already figured it out, but I want to point you to another solution. The apply_chat_template function returns a BatchFeature object and you can utilize it's .to method to move the input parameters to respective device:
# ...
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to(device)
# ...