I'm looking for a way to solve this crypt arithmetic problem of:
ROBERT + GERALD = DONALD
and potentially others as well, where each letter represents a digit.
How would you go about solving this by hand and how does that relate to solving it programmatically?
Thank you in advance
You can actually work this out as a sum:
robert
+ gerald
------
= donald
and use basic mathematical knowledge.
For example, there's no carry possible in the right column (6) and we have T + D = D
. That means T
must be zero.
Similarly, for column 5, there's no carry from column 6 and R + L = L
means R
is zero as well, and no carry to column 4.
Same with column 4, E + A = A
so E
is zero.
So we now have:
0ob000
+ g00ald
------
= donald
From there, we can infer from columns 3 and 1 that b==n
and g==d
and they (along with o/a/l/d
) can be any value since every digit is being added to zero so there is no chance of carry anywhere. So let's just make them all one:
011000
+ 100111
------
= 111111
In fact, you could make them all zero and end up with 000000 + 000000 = 000000
.
But that's hardly programming related, so let's make it so:
#include <stdio.h>
int main (void) {
int robert, gerald, donald;
for (int r = 0; r < 10; r++) {
for (int o = 0; o < 10; o++) {
for (int b = 0; b < 10; b++) {
for (int e = 0; e < 10; e++) {
for (int t = 0; t < 10; t++) {
for (int g = 0; g < 10; g++) {
for (int a = 0; a < 10; a++) {
for (int l = 0; l < 10; l++) {
for (int d = 0; d < 10; d++) {
for (int n = 0; n < 10; n++) {
robert = r * 100000 + o * 10000 + b * 1000 + e * 100 + r * 10 + t;
gerald = g * 100000 + e * 10000 + r * 1000 + a * 100 + l * 10 + d;
donald = d * 100000 + o * 10000 + n * 1000 + a * 100 + l * 10 + d;
if (robert + gerald == donald) {
printf (" %06d\n", robert);
printf ("+ %06d\n", gerald);
printf (" ------\n");
printf ("= %06d\n", donald);
printf ("........\n");
}
}
}
}
}
}
}
}
}
}
}
return 0;
}
That will give you a whole host of solutions.
And, before you complain that you cannot have repeated digits, there is no solution if that's the case, since mathematically both T
and R
must be zero, as shown in the original reasoning above. And you can prove this empirically with:
#include <stdio.h>
int main (void) {
int robert, gerald, donald;
for (int r = 0; r < 10; r++) {
for (int o = 0; o < 10; o++) {
if (o==r) continue;
for (int b = 0; b < 10; b++) {
if ((b==r) || (b==o)) continue;
for (int e = 0; e < 10; e++) {
if ((e==r) || (e==o) || (e==b)) continue;
for (int t = 0; t < 10; t++) {
if ((t==r) || (t==o) || (t==b) || (t==e)) continue;
for (int g = 0; g < 10; g++) {
if ((g==r) || (g==o) || (g==b) || (g==e) || (g==t)) continue;
for (int a = 0; a < 10; a++) {
if ((a==r) || (a==o) || (a==b) || (a==e) || (a==t) || (a==g)) continue;
for (int l = 0; l < 10; l++) {
if ((l==r) || (l==o) || (l==b) || (l==e) || (l==t) || (l==g) || (l==a)) continue;
for (int d = 0; d < 10; d++) {
if ((d==r) || (d==o) || (d==b) || (d==e) || (d==t) || (d==g) || (d==a) || (d==l)) continue;
for (int n = 0; n < 10; n++) {
if ((n==r) || (n==o) || (n==b) || (n==e) || (n==t) || (n==g) || (n==a) || (n==l) || (n==d)) continue;
robert = r * 100000 + o * 10000 + b * 1000 + e * 100 + r * 10 + t;
gerald = g * 100000 + e * 10000 + r * 1000 + a * 100 + l * 10 + d;
donald = d * 100000 + o * 10000 + n * 1000 + a * 100 + l * 10 + d;
if (robert + gerald == donald) {
printf (" %06d\n", robert);
printf ("+ %06d\n", gerald);
printf (" ------\n");
printf ("= %06d\n", donald);
printf ("........\n");
}
}
}
}
}
}
}
}
}
}
}
return 0;
}
which outputs no solutions.
Now DONALD + GERALD = ROBERT
, that's a different matter but you can solve that simply by modifying the code above slightly, making the if
statement into:
if (donald + gerald == robert) {
printf (" %06d\n", donald);
printf ("+ %06d\n", gerald);
printf (" ------\n");
printf ("= %06d\n", robert);
printf ("........\n");
}
and you get the single solution:
526485
+ 197485
------
= 723970