within a UDF I want to read a delta table into a dataframe, based on its content update the row of the actual dataframe, on which the UDF is applied, and then update the delta table. I would use the UDF within a structured streaming foreachbatch. How is this possible?
df_other = spark.read.format("delta").load(path)
@udf(StringType())
def my_udf(df_other: DataFrame) -> str:
...
# some things to do based on df_other's content.
...
df_new_rows = ...
df_new_rows.write.format("delta").mode("append").write(path)
...
return "wathever"
Use the following UDF to read and update the delta table:
def read_and_process_delta_table(spark, table_path):
# Define UDF to perform operations on DataFrame
@udf(StringType())
def my_combined_udf(name, age):
# Perform operations based on name and age
# Example: Concatenate name and age
return f"{name}_{age}"
# Read Delta table
delta_df = spark.read.format("delta").load(table_path)
# Apply combined UDF to DataFrame
processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
return processed_df
It will read and update the dataframe successfully, as shown below:
Delta table:
name | age |
---|---|
AA | 25 |
CC | 35 |
BB | 30 |
Updated delta table:
name | age | processed_column |
---|---|---|
AA | 25 | AA_25 |
CC | 35 | CC_35 |
BB | 30 | BB_30 |
Here is the complete code for your reference:
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
# Function to read Delta table
def read_and_process_delta_table(spark, table_path):
# Define UDF to perform operations on DataFrame
@udf(StringType())
def my_combined_udf(name, age):
# Perform operations based on name and age
# Example: Concatenate name and age
return f"{name}_{age}"
# Read Delta table
delta_df = spark.read.format("delta").load(table_path)
# Apply combined UDF to DataFrame
processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
return processed_df
# Usage
spark = SparkSession.builder.appName("DeltaUDFExample").getOrCreate()
table_path = "/mnt/files/delta_table"
# Read and process Delta table
result = read_and_process_delta_table(spark, table_path)
# Show the result
result.show()
You can refer this to UDF within a structured streaming.