azurepysparkdatabricksspark-structured-streaming

PySpark UDF - read and write other dataframe


within a UDF I want to read a delta table into a dataframe, based on its content update the row of the actual dataframe, on which the UDF is applied, and then update the delta table. I would use the UDF within a structured streaming foreachbatch. How is this possible?

df_other = spark.read.format("delta").load(path)

@udf(StringType())
def my_udf(df_other: DataFrame) -> str:
    ...
    # some things to do based on df_other's content.
    ...
    df_new_rows = ...
    df_new_rows.write.format("delta").mode("append").write(path)
    ...
    return "wathever"


Solution

  • Use the following UDF to read and update the delta table:

    def read_and_process_delta_table(spark, table_path):
        # Define UDF to perform operations on DataFrame
        @udf(StringType())
        def my_combined_udf(name, age):
            # Perform operations based on name and age
            # Example: Concatenate name and age
            return f"{name}_{age}"
    
        # Read Delta table
        delta_df = spark.read.format("delta").load(table_path)
    
        # Apply combined UDF to DataFrame
        processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
        processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
        return processed_df
    

    It will read and update the dataframe successfully, as shown below:

    Delta table:

    name age
    AA 25
    CC 35
    BB 30

    Updated delta table:

    name age processed_column
    AA 25 AA_25
    CC 35 CC_35
    BB 30 BB_30

    Here is the complete code for your reference:

    from pyspark.sql import SparkSession
    from pyspark.sql.functions import udf
    from pyspark.sql.types import StringType
    
    # Function to read Delta table
    def read_and_process_delta_table(spark, table_path):
        # Define UDF to perform operations on DataFrame
        @udf(StringType())
        def my_combined_udf(name, age):
            # Perform operations based on name and age
            # Example: Concatenate name and age
            return f"{name}_{age}"
    
        # Read Delta table
        delta_df = spark.read.format("delta").load(table_path)
    
        # Apply combined UDF to DataFrame
        processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
        processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
        return processed_df
    
    # Usage
    spark = SparkSession.builder.appName("DeltaUDFExample").getOrCreate()
    table_path = "/mnt/files/delta_table"
    
    # Read and process Delta table
    result = read_and_process_delta_table(spark, table_path)
    
    # Show the result
    result.show()
    

    You can refer this to UDF within a structured streaming.