I have the following trained classifier:
classifier = nltk.NaiveBayesClassifier.train(features[:train_count])
When I try to use it to classify()
:
result = classifier.classify(feature)
and feature
is ({'mean_compound': 1.0, 'mean_positive': 0.0, 'positives': 0}, '')
, I hit the following error:
Traceback (most recent call last):
File "/usr/src/Python/pAIthon/Nltk.py", line 240, in <module>
CustomizeSentimentAnalysis()
File "/usr/src/Python/pAIthon/Nltk.py", line 186, in CustomizeSentimentAnalysis
result = classifier.classify(feature)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/khteh/.local/lib/python3.12/site-packages/nltk/classify/naivebayes.py", line 89, in classify
return self.prob_classify(featureset).max()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/khteh/.local/lib/python3.12/site-packages/nltk/classify/naivebayes.py", line 95, in prob_classify
featureset = featureset.copy()
^^^^^^^^^^^^^^^
AttributeError: 'tuple' object has no attribute 'copy'
What should be the input parameter to classify()
?
Use the feature without the label: {'mean_compound': 1.0, 'mean_positive': 0.0, 'positives': 0}