In CLRS excise 22.1-8 (I am self learning, not in any universities)
Suppose that instead of a linked list, each array entry Adj[u] is a hash table containing the vertices v for which (u,v) ∈ E. If all edge lookups are equally likely, what is the expected time to determine whether an edge is in the graph? What disadvantages does this scheme have? Suggest an alternate data structure for each edge list that solves these problems. Does your alternative have disadvantages compared to the hash table?
So, if I replace each linked list with hash table, there are following questions:
I have the following partial answers:
For the other two questions, I can't get a clue.
Anyone can give me a clue?
It depends on the hash table and how it handles collisions, for example assume that in our hash table each entry points to a list of elements having the same key.
If the distribution of elements is sufficiently uniform, the average cost of a lookup depends only on the average number of elements per each list(load factor). so the average number of elements per each list is n/m where m is the size of our hash table.