I have a class in MATLAB that represents an imaginary number. I have a constructor and two data members: real
and imag
. I am playing with overloading operator in a class and I want to make it work with matrices:
function obj = plus(o1, o2)
if (any(size(o1) ~= size(o2)))
error('dimensions must match');
end
[n,m] = size(o1);
obj(n,m) = mycomplex();
for i=1:n
for j=1:m
obj(i,j).real = o1(i,j).real + o2(i,j).real;
obj(i,j).imag = o1(i,j).imag + o2(i,j).imag;
end
end
end
But I don't want to use for loops. I want to do something like:
[obj.real] = [o1.real] + [o2.real]
But I don't understand why it does not work... the error says:
"Error in + Too many output arguments".
I know that in MATLAB it is good to avoid for loops for speed up... Can someone explain me why this does not work, and the right way to think about vectorization in MATLAB with an example for my function?
Thanks in advance.
EDIT: definition of my complex class:
classdef mycomplex < handle & matlab.mixin.CustomDisplay
properties (Access = public)
real;
imag;
end
methods (Access = public)
function this = mycomplex(varargin)
switch (nargin)
case 0
this.real = 0;
this.imag = 0;
case 1
this.real = varargin{1};
this.imag = 0;
case 2
this.real = varargin{1};
this.imag = varargin{2};
otherwise
error('Can''t have more than two arguments');
end
obj = this;
end
end
end
Consider the implementation below. First some notes:
the constructor can be called with no parameters. This is important to allow preallocating object arrays: obj(m,n) = MyComplex()
for convenience, the constructor accepts either scalar of array arguments. So we can call: c_scalar = MyComplex(1,1)
or c_array = MyComplex(rand(3,1), rand(3,1))
the plus
operator uses a for-loop for now (we will later change this).
(Note that I skipped some validations in the code, like checking that o1
and o2
are of the same size, similarly for a
and b
in the constructor).
classdef MyComplex < handle
properties
real
imag
end
methods
function obj = MyComplex(a,b)
% default values
if nargin < 2, b = 0; end
if nargin < 1, a = 0; end
% accepts scalar/array inputs
if isscalar(a) && isscalar(b)
obj.real = a;
obj.imag = b;
else
[m,n] = size(a);
obj(m,n) = MyComplex();
for i=1:m*n
obj(i).real = a(i);
obj(i).imag = b(i);
end
end
end
function obj = plus(o1, o2)
[m,n] = size(o1);
obj(m,n) = MyComplex(); % preallocate object array
for i=1:m*n % linear indexing
obj(i).real = o1(i).real + o2(i).real;
obj(i).imag = o1(i).imag + o2(i).imag;
end
end
end
end
An example of using the class:
% scalar objects
>> c1 = MyComplex(1,2);
>> c2 = MyComplex(3,4);
>> c3 = c1 + c2
c3 =
MyComplex with properties:
real: 4
imag: 6
% array of objects
>> c4 = [c1;c1] + [c2;c2]
c4 =
2x1 MyComplex array with properties:
real
imag
Now here is a vectorized version of the plus
method:
function obj = plus(o1, o2)
[m,n] = size(o1);
obj(m,n) = MyComplex();
x = num2cell([o1.real] + [o2.real]);
[obj.real] = deal(x{:});
x = num2cell([o1.imag] + [o2.imag]);
[obj.imag] = deal(x{:});
end
I'm using the syntax: [objarray.propName]
to reference a property in object arrays, this return the values as a vector.
For the opposite of assigning a property in an object array, I use comma-separated lists, thus I had to convert to a cell array to get the x{:}
convenient syntax.
Note that the deal
call is not strictly needed, we could write the assignment without it:
[obj.real] = x{:};