machine-learningscikit-learnauto-sklearn

AutoSKLearn predict_proba equivalent?


Is there an equivalent to SKLearn's predict_proba in AutoSKLearn? I can't seem to find a way to determine the confidence of AutoSKLearns predictions.


Solution

  • A predict_proba method should be implemented for AutoSklearnClassifier

    From auto-sklearn documentation:

    predict_proba(X, batch_size=None, n_jobs=1)

    Predict probabilities of classes for all samples X.

    Parameters:

    • Xarray-like or sparse matrix of shape = [n_samples, n_features]
    • ...

    Returns:

    • yarray of shape = [n_samples, n_classes] or [n_samples, n_labels]

    Which in context looks something like this:

    from autosklearn.classification import AutoSklearnClassifier
    from sklearn.datasets import make_classification
    from sklearn.model_selection import train_test_split
    
    X, y = make_classification(n_samples=1000)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    
    clf = AutoSklearnClassifier(time_left_for_this_task=30)
    clf.fit(X_train, y_train)
    
    predictions = clf.predict_proba(X_test)
    print(predictions)