I have this 4 bit ring counter that I'm trying to make, and I feel like I'm so close, but I can't figure out how to make one input depend on the previous state's output. Here's what I have:
`default_nettype none
// Empty top module
module top (
// I/O ports
input logic hz100, reset,
input logic [20:0] pb,
output logic [7:0] left, right
);
// Your code goes here...
q[3:0];
assign q[3:0] = right[3:0];
hc74_set setFF(.c(pb[0]), .d(pb[1]), .q(right[0]), .sn(pb[16]));
hc74_reset resetFF1(.c(pb[0]), .d(pb[1]), .q0(right[1]), .rn(pb[16]));
hc74_reset resetFF2(.c(pb[0]), .d(pb[1]), .q1(right[2]), .rn(pb[16]));
hc74_reset resetFF3(.c(pb[0]), .d(pb[1]), .q2(right[3]), .rn(pb[16]));
endmodule
// Add more modules down here...
// This is a single D flip-flop with an active-low asynchronous set (preset).
// It has no asynchronous reset because the simulator does not allow it.
// Other than the lack of a reset, it is half of a 74HC74 chip.
module hc74_set(input logic d, c, sn,
output logic q, qn);
assign qn = ~q;
always_ff @(posedge c, negedge sn)
if (sn == 1'b0)
q <= 1'b1;
else
q <= d;
endmodule
// This is a single D flip-flop with an active-low asynchronous reset (clear).
// It has no asynchronous set because the simulator does not allow it.
// Other than the lack of a set, it is half of a 74HC74 chip.
module hc74_reset(input logic d, c, rn,
output logic q, qn);
assign qn = ~q;
always_ff @(posedge c, negedge rn)
if (rn == 1'b0)
q <= 1'b0;
else
q <= d;
endmodule
This is on an FPGA simulator, which is why there are a few things like pb (these are push buttons) and left, right outputs which are sets of 8 LEDs each.
Let's first make sure we are on the same page
Based on wikipedia description of a ring counter
This could be implemented as follows:
module top (
// I/O ports
input logic reset_n,
input logic clk,
output logic [3:0] ring
);
// Your code goes here...
always @(posedge clk or negedge reset_n) begin
if(~reset_n) begin
ring = 4'b0001;
end
else begin
ring[0] <= ring[3];
ring[1] <= ring[0];
ring[2] <= ring[1];
ring[3] <= ring[2];
end
end
endmodule
The output ring is a 4-bit one hot vector, reset_n = 0
makes ring = 0001
every clock with reset_n = 1
rolls the ring to the right, [0001, 0010, 0100, 1000, 0001, ...].
But you want to use instances of the flops you defined. Notice that in an assignment a <= b
, a is the output of the flop (q port), and b is the input of the flop (d port).
module top (
// I/O ports
input logic reset_n,
input logic clk,
output logic [3:0] ring
);
// Your code goes here...
hc74_set setFF(.c(clk), .d(ring[3]), .q(ring[0]), .sn(reset_n));
hc74_reset resetFF1(.c(clk), .d(ring[0]), .q0(ring[1]), .rn(reset_n));
hc74_reset resetFF2(.c(clk), .d(ring[1]), .q1(ring[2]), .rn(reset_n));
hc74_reset resetFF3(.c(clk), .d(ring[2]), .q2(ring[3]), .rn(reset_n));
endmodule
You have to connect the ports accordingly, I just used clk
for the clock and reset_n for the negated reset signal.