I want to build a ggplot with a color gradient containing an exception.
For instance, say that I want the gradient to go from blue
to black
, but with the special value 21
being red
.
This can be done using 2 geoms with data filtering:
library(tidyverse)
mtcars %>%
ggplot(aes(x = qsec, y = wt, color = mpg)) +
geom_point(size = 3, data=~filter(.x, mpg==21), color="red") +
geom_point(size = 3, data=~filter(.x, mpg>21)) +
scale_color_gradient(low="blue", high="black",
transform = "log")
Created on 2024-12-08 with reprex v2.1.1
However, using this technique has annoying side effects, one being that the legend doesn't contain the red value.
Is there a way to achieve the same result with one standard geom?
[Corrected updated version 09.12.24] you can use scale_color_gradientn
:
df %>%
ggplot(aes(x = qsec, y = wt, color = !!sym(column_name))) +
geom_point(size = 3) +
scale_color_gradientn(
colours = c("blue", "red", "black"),
values = c(0, 0.5, 1),
transform = "log"
)
The colours
are the colours used at the specific datapoints within the mpg column (0 = blue, 0.5 = red, 01 = blue). The scale_color_gradientn
will then scale the colours in between these values.
Using this we could build a custom function highlight_color
that takes a dataframe df and a column column_name to apply the colour ramp to. highlight_val marks the value which should be marked as red!
Note: If the highlighted value is near the max/min, then the colour red will applied +- threshold_to_highlightValue around this value.
library(tidyverse)
library(scales)
# Create a custom color scale function
highlight_color <- function(df, column_name, highlight_val = 21, threshold_to_highlightValue = 0.01) {
# Convert column_name from string to actual column reference
col <- df[[column_name]]
# Ensure the column is numeric for calculations
if (!is.numeric(col)) {
stop("The column must be numeric.")
}
# Check if highlight_val exists in the column
if (highlight_val %in% col) {
# Calculate the normalized position of the highlight value in the scale
pos_in_df <- (highlight_val - min(col)) / (max(col) - min(col))
# Define color palette and corresponding values
if (pos_in_df == 0) {
colors <- c("red", "blue", "black")
values <- c(0, threshold_to_highlightValue, 1)
} else if (pos_in_df == 1) {
colors <- c("black", "blue", "red")
values <- c(0, 1 - threshold_to_highlightValue, 1)
} else {
colors <- c("cadetblue1", "blue", "red","blue", "black")
values <- c(0, pos_in_df - threshold_to_highlightValue, pos_in_df, pos_in_df + threshold_to_highlightValue, 1)
}
# Create and return the plot with the customized gradient
p <- df %>%
ggplot(aes(x = qsec, y = wt, color = !!sym(column_name))) +
geom_point(size = 3) +
scale_color_gradientn(
colours = colors,
values = values,
rescaler = scales::rescale, # Ensures proper handling of normalized values
limits = range(col) # Ensure the color scale fits the data range
) +
theme_minimal() +
labs(color = column_name) # Add dynamic label for the legend
return(p)
} else {
# If highlight value is not in the column, return a message
stop(paste0("Value ", highlight_val, " is not in column ", column_name))
}
}
# Example usage
highlight_color(mtcars, "mpg", highlight_val = 21, threshold_to_highlightValue = 0.01)
which generates: