rggplot2scale

Custom scale_color with gradient and manual value


I want to build a ggplot with a color gradient containing an exception.

For instance, say that I want the gradient to go from blue to black, but with the special value 21 being red.

This can be done using 2 geoms with data filtering:

library(tidyverse)
mtcars %>%
  ggplot(aes(x = qsec, y = wt, color = mpg)) +
  geom_point(size = 3, data=~filter(.x, mpg==21), color="red") +
  geom_point(size = 3, data=~filter(.x, mpg>21)) +
  scale_color_gradient(low="blue", high="black",
                        transform = "log")

ggplot output

Created on 2024-12-08 with reprex v2.1.1

However, using this technique has annoying side effects, one being that the legend doesn't contain the red value.

Is there a way to achieve the same result with one standard geom?


Solution

  • [Corrected updated version 09.12.24] you can use scale_color_gradientn:

    df %>%
          ggplot(aes(x = qsec, y = wt, color = !!sym(column_name))) +
          geom_point(size = 3) +
          scale_color_gradientn(
            colours = c("blue", "red", "black"),
            values = c(0, 0.5, 1),
            transform = "log"
          )
    

    The colours are the colours used at the specific datapoints within the mpg column (0 = blue, 0.5 = red, 01 = blue). The scale_color_gradientn will then scale the colours in between these values.


    Using this we could build a custom function highlight_color that takes a dataframe df and a column column_name to apply the colour ramp to. highlight_val marks the value which should be marked as red!

    Note: If the highlighted value is near the max/min, then the colour red will applied +- threshold_to_highlightValue around this value.

    library(tidyverse)
    library(scales)
    # Create a custom color scale function
    highlight_color <- function(df, column_name, highlight_val = 21, threshold_to_highlightValue = 0.01) {
      # Convert column_name from string to actual column reference
      col <- df[[column_name]]
      
      # Ensure the column is numeric for calculations
      if (!is.numeric(col)) {
        stop("The column must be numeric.")
      }
      
      # Check if highlight_val exists in the column
      if (highlight_val %in% col) {
        # Calculate the normalized position of the highlight value in the scale
        pos_in_df <- (highlight_val - min(col)) / (max(col) - min(col))
        
        # Define color palette and corresponding values
        if (pos_in_df == 0) {
          colors <- c("red", "blue", "black")
          values <- c(0, threshold_to_highlightValue, 1)
        } else if (pos_in_df == 1) {
          colors <- c("black", "blue", "red")
          values <- c(0, 1 - threshold_to_highlightValue, 1)
        } else {
          colors <- c("cadetblue1", "blue", "red","blue", "black")
          values <- c(0, pos_in_df - threshold_to_highlightValue, pos_in_df, pos_in_df + threshold_to_highlightValue, 1)
        }
        
        # Create and return the plot with the customized gradient
        p <- df %>%
          ggplot(aes(x = qsec, y = wt, color = !!sym(column_name))) +
          geom_point(size = 3) +
          scale_color_gradientn(
            colours = colors,
            values = values,
            rescaler = scales::rescale,  # Ensures proper handling of normalized values
            limits = range(col)          # Ensure the color scale fits the data range
          ) +
          theme_minimal() +
          labs(color = column_name)  # Add dynamic label for the legend
        
        return(p)
      } else {
        # If highlight value is not in the column, return a message
        stop(paste0("Value ", highlight_val, " is not in column ", column_name))
      }
    }
    
    # Example usage
    highlight_color(mtcars, "mpg", highlight_val = 21, threshold_to_highlightValue = 0.01)
    

    which generates:

    output